Search results

Search for "photocatalytic hydrogen production" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • , environmental monitoring, disinfection, and sterilization are all areas where the photocatalytic breakdown of contaminants is used. Primary energy uses included photocatalytic hydrogen production from carbon dioxide, conversion of carbon dioxide to specific molecular organic matter, and nitrogen fixation [1
PDF
Album
Review
Published 11 Nov 2022

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • units. The challenges and prospects associated with D–A polymer-based photocatalysts are described as well. Keywords: π-conjugated polymeric photocatalysts; donor–acceptor junctions; nanostructure semiconductors; photocatalytic hydrogen production; Introduction To date, fossil fuels still are the
  • and Honda [4] reported the first example of hydrogen production by photocatalytic water splitting in 1972, using TiO2 as the photocatalyst under ultraviolet-light irradiation. Since then, numerous semiconductors have been explored for photocatalytic hydrogen production (PHP) by water splitting, which
  • , studies regarding the long-term stability of CPs are still needed. (Left) Schematic diagram of the mechanism of semiconducting catalyst-mediated photocatalytic hydrogen production (CB: conduction band, VB: valence band, SED: sacrificial electron donors). (Right) Charge separation in a CP-based
PDF
Album
Review
Published 30 Jun 2021

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • water into hydrogen and oxygen. Some studies have focused on only the half-reaction for water splitting, while ignoring the other half-reaction for oxygen production. This is often called photocatalytic hydrogen production (or generation) and can be regarded as a low-configured version of photocatalytic
PDF
Album
Review
Published 04 Jan 2018

Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts

  • Jing Wang,
  • Ke Feng,
  • Hui-Hui Zhang,
  • Bin Chen,
  • Zhi-Jun Li,
  • Qing-Yuan Meng,
  • Li-Ping Zhang,
  • Chen-Ho Tung and
  • Li-Zhu Wu

Beilstein J. Nanotechnol. 2014, 5, 1167–1174, doi:10.3762/bjnano.5.128

Graphical Abstract
  • ][27][28][29][30][31][32][33]. Specifically, graphene has been involved in photocatalytic hydrogen production systems [34], such as TiO2-(N)RGO-Pt [35][36][37][38], g-C3N4-RGO-Pt [39], CdS-RGO-Pt [40][41][42][43], MoS2-NRGO [44][45], EY-RGO-Pt [46] and BiVO4-RGO-Ru/SrTiO3:Rh [47] (RGO: reduced graphene
PDF
Album
Supp Info
Full Research Paper
Published 29 Jul 2014

Functionalized nanostructures for enhanced photocatalytic performance under solar light

  • Liejin Guo,
  • Dengwei Jing,
  • Maochang Liu,
  • Yubin Chen,
  • Shaohua Shen,
  • Jinwen Shi and
  • Kai Zhang

Beilstein J. Nanotechnol. 2014, 5, 994–1004, doi:10.3762/bjnano.5.113

Graphical Abstract
  • ][2][3][4]. Photocatalytic hydrogen production from water by using solar energy is one of the most acceptable routes for this aim, since only abundant water and solar energy are needed for hydrogen production in the process. If the economic viability for industrial application is successfully
  • (corresponding to an absorption threshold larger than 420 nm). Efficient utilization of these huge amounts of "low energy" photons is crucial to the realization of commercial solar photocatalytic hydrogen production. To this end, band engineering is necessary to design semiconductor photocatalysts with
  • Pt/TiO2 nanocrystal photocatalysts exhibited enhanced photocatalytic hydrogen production under visible light irradiation [18]. Lee et al. also reported that CdS and CdSe nanocrystals dispersed on the internal surface of mesoporous TiO2 films could lead to the promoted photocatalytic hydrogen
PDF
Album
Review
Published 09 Jul 2014

High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

  • Leny Yuliati,
  • Melody Kimi and
  • Mustaffa Shamsuddin

Beilstein J. Nanotechnol. 2014, 5, 587–595, doi:10.3762/bjnano.5.69

Graphical Abstract
  • -doped Cd1−xZnxS is the co-precipitation method [21]. However, the co-precipitation method usually produces materials with low crystallinity. Since high crystallinity is beneficial for photocatalytic hydrogen production [1][2][3][4], it is worth to further investigate an alternative method to prepare the
  • activation process. The similar phenomenon was also reported to occur on CdS/ZnFe2O4 photocatalyst during the photocatalytic hydrogen production [27]. In order to understand the possible photochemical activation process occurred on the Ag(0.01)-doped Cd0.1Zn0.9S sample, the used sample was characterized by
PDF
Album
Full Research Paper
Published 07 May 2014
Other Beilstein-Institut Open Science Activities